Analysis of Subspace Iteration for Eigenvalue Problems with Evolving Matrices
نویسنده
چکیده
The subspace iteration algorithm, a block generalization of the classical power iteration, is known for its excellent robustness properties. Specifically, the algorithm is resilient to variations in the original matrix, and for this reason it has played an important role in applications ranging from Density Functional Theory in Electronic Structure calculations to matrix completion problems in machine learning, and subspace tracking in signal processing applications. This note explores its convergence properties in the presence of perturbations. The specific question addressed is the following. If we apply the subspace iteration algorithm to a certain matrix and this matrix is perturbed at each step, under what conditions will the algorithm converge?
منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملNumerical methods for large eigenvalue problems
Over the past decade considerable progress has been made towards the numerical solution of large-scale eigenvalue problems, particularly for nonsymmetric matrices. Krylov methods and variants of subspace iteration have been improved to the point that problems of the order of several million variables can be solved. The methods and software that have led to these advances are surveyed.
متن کاملNumerical Solution of Linear Eigenvalue Problems
We review numerical methods for computing eigenvalues of matrices. We start by considering the computation of the dominant eigenpair of a general dense matrix using the power method, and then generalize to orthogonal iterations and the QR iteration with shifts. We also consider divide-and-conquer algorithms for tridiagonal matrices. The second part of this survey involves the computation of eig...
متن کاملA Subspace Approximation Method for the Quadratic Eigenvalue Problem
Quadratic eigenvalue problems involving large matrices arise frequently in areas such as the vibration analysis of structures, MEMS simulation, and the solution of quadratically constrained least squares problems. The typical approach is to solve the quadratic eigenvalue problem using a mathematically equivalent linearized formulation, resulting in a doubled dimension and a lack of backward sta...
متن کاملRestarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems
This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 37 شماره
صفحات -
تاریخ انتشار 2016